

Welcome to CIRI Toolkit’s documentation!

CIRI2

	About
	Release Notes

	Citations:

	Usage
	Commands and arguments

	Preparation for using CIRI2

	Annotation formats

	An example of running CIRI2

	Test of CIRI2

	Q&A

CIRI-AS

	About

	Usage
	How to run CIRI-AS

	Commands and arguments

	Preparation for using CIRI-AS

	Annotation formats

	An example of running CIRI-AS

CIRI-full

	About

	Installation

	Running CIRI-full pipeline

	Running CIRI-full step-by-step
	The RO1 module

	The RO2 module

	The Merge module

	Running CIRI-vis

	How to run the test data set using CIRI-full

CIRI-vis

	About
	Author

	Release Notes

	Installation
	Prerequisites

	Install CIRI-vis

	Commands and Arguments
	Running CIRI-vis

	Output files

	Example Usage

CIRIquant

	About
	Author

	Release Notes

	License

	Citing CIRIquant

	Installation
	Prerequisites

	Use the released version (Recommended)

	Install CIRIquant and dependencies using conda (Not recommended)

	Install CIRIquant using pip

	Install CIRIquant from source code

	Usage 1: circRNA quantifcation
	Basic options

	Example YAML config

	Example circRNA bed file

	Example Usage

	Output format

	Usage 2: RNase R effect correction
	Example usage

	Usage 3: Differential expression analysis
	Study without biological replicate

	Study with biological replicates

	Test data
	Download test dataset

	circRNA quantification

	Differential expression analysis

CIRI-long

	About
	CIRI-long: circular RNA identifier using long-read sequencing data

	Author

	Release Notes

	License

	Citing CIRI-long

	Installation
	Dependency

	Install CIRI-long from source code

	Install CIRI-long using pip

	Usage
	Basic usage

	Step1. circRNA identification

	Step2. isoform collapse

	Step3. Output visualization

CIRI-long Sequencing Protocol

	CIRI-long Nanopore Library Preparation
	1. Total RNA Extraction & Ribosomal RNA Depletion

	2. Poly(A) Tailing & RNase R Treatment

	3. SMARTer Reverse Transcription

	4. cDNA PCR Amplification

	5. Fragment Size Selection

	6. Nanopore Sequencing

circAtlas

	circAtlas v2.0

About

CIRI2: Circular RNA identification based on multiple seed matching

CIRI (circRNA identifier) is a novel chiastic clipping signal based algorithm,which can unbiasedly and accurately detect circRNAs from transcriptome data by employing multiple filtration strategies.

Release Notes

What’s new in CIRI2?

	CIRI2 supports multi-thread and is convenient for large data set.

	CIRI2 supports variable read lengths and can process combined data sets after trimming.

	CIRI2 outputs strand of predicted circRNAs.

Citations:

If you use CIRI2, please cite the following papers:

	Yuan Gao†, Jinfeng Wang† and Fangqing Zhao*. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biology (2015) 16:4.

	Yuan Gao, Jinyang Zhang and Fangqing Zhao*. Circular RNA identification based on multiple seed matching. Briefings in Bioinformatics (2017) DOI: 10.1093/bib/bbx014.

Usage

Commands and arguments

How to run CIRI2:

perl CIRI2.pl -I in.sam -O outfile -F ref.fa (-R ref_dir/)

*CIRI2 can determine automatically to use PE or SE mode according to input SAM.

The arguments of CIRI2 are as followings:

-I, --in
 input SAM file name (required; generated by BWA-MEM)
-O, --out
 output circRNA list name (required)
-F, --ref_file
 FASTA file of all reference sequences. Please make sure this file is
 the same one provided to BWA-MEM. Either this argument or -R/--ref-dir
 is required.
-R, --ref_dir
 directory of reference sequence(s). Please make sure fasta files in
 this directory are from the FASTA file(s) provided to BWA-MEM. Either
 this argument or -F/--ref-file is required.
-A, --anno
 input GTF/GFF3 formatted annotation file name (optional)
-G, --log
 output log file name (optional)
-H, --help
 show this help information
-S, --max_span
 max spanning distance of circRNAs (default: 200000)
-high, --high_strigency
 use high strigency: only output circRNAs supported by more than 2
 distinct PCC signals (default)
-low, --low_strigency
 use low strigency: only output circRNAs supported by more than 2
 junction reads
-0, --no_strigency
 output all circRNAs regardless junction read counts or PCC signals
-U, --mapq_uni
 set threshold for mappqing quality of each segment of junction reads
 (default: 10; should be within [0,30])
-E, --rel_exp
 set threshold for relative expression calculated based on counts of
 junction reads and non-junction reads (optional: e.g. 0.1)
-M, --chrM
 tell CIRI2 the ID of mitochondrion in reference file(s) (default: chrM)
-T, --thread_num
 set number of threads for parallel running (default: 1)
-Q, --quiet
 keep quiet when running
-D, --output_all
 keep the temporary files after running (more disk space would be needed)

Reads mapped to mitochondrial sequence (provided by –chrM will be dropped).

Preparation for using CIRI2

	Trim reads first if necessary.
This step is optional. For data sets with good sequencing quality, this step will not largely influence prediction of CIRI2.

	Align the reads to reference to generate SAM file using BWA-MEM tool , which is a split mapping algorithm (http://bio-bwa.sourceforge.net/bwa.shtml).

Recommended protocols for running BWA-MEM:

bwa index -a bwtsw ref.fa
bwa mem –T 19 ref.fa reads.fq > aln-se.sam (single-end reads)
bwa mem –T 19 ref.fa read1.fq read2.fq > aln-pe.sam (paired-end reads)

When using a nohup command, please make sure a log file is specifically designated so that the output file is a clean SAM record. Recommended protocols as following:

bwa index -a bwtsw ref.fa
bwa mem –T 19 ref.fa reads.fq 1> aln-se.sam 2> aln-se.log
bwa mem –T 19 ref.fa read1.fq read2.fq 1> aln-pe.sam 2> aln-pe.log

IMPORTANT: Please do not try processing the output SAM (e.g. sorting or filtering), which would confuse CIRI2. CIRI2 has been optimized to analysis SAM file without modification, and efficient filtrations have been included in CIRI2.

Annotation formats

Although CIRI2 can de novo detect circRNA, it can also use annotation as complementary filtrations.

Please make sure you are using exactly the same version of genomic sequences and their annotations when running CIRI2.

We recommend .gtf annotations generated by ensembl. Here is the link for their latest annotations of model organisms: ftp://ftp.ensembl.org/pub/current_gtf

An example of running CIRI2

Before we start, please make sure you have installed parallel Perl 5.8 or higher and use Mac OS X or Linux operation system.

Please download CIRI2 and test_data2.zip from https://sourceforge.net/projects/ciri/files/CIRI2/ and then unzip the three files in test_data2.zip. test.sam is a SAM file of alignment records generated by BWA-MEM. The only parameter of BWA-MEM was -T 19. chr1.fa is the FASTA file of hg19 chromosome 1 downloaded from UCSC and chr1.gtf is annotation for chromosome 1 extracted from version 18 gencode gtf file.

Enter the directory and type as following in your terminal:

perl CIRI2.pl -I test.sam -O outfile -F chr1.fa -A chr1.gtf

CIRI2 can finish circRNA detecting within a minute, and then you will see the following results in outfile:

circRNA_ID	chr	circRNA_start	circRNA_end	#junction_reads	SM_MS_SMS	#non_junction_reads	junction_reads_ratio	circRNA_type	gene_id	strand	junction_reads_ID
chr1:16770127|16775696	chr1	16770127	16775696	8	5_6_0	192	0.077	exon	ENSG00000157191.15,	+	GFGG-GA2-1:2:33:2000:1585,GFGG-GA2-1:2:33:2000:1587,GFGG-GA2-1:2:33:2000:1589,GFGG-GA2-1:2:33:2000:1590,GFGG-GA2-1:2:33:2000:1576,GFGG-GA2-1:2:33:2000:1580,GFGG-GA2-1:2:33:2000:1583,GFGG-GA2-1:2:33:2000:1593,
chr1:16775588|16778510	chr1	16775588	16778510	6	5_5_0	203	0.056	exon	ENSG00000157191.15,	+	GFGG-GA2-1:2:33:2000:1276,GFGG-GA2-1:2:33:2000:1277,GFGG-GA2-1:2:33:2000:1280,GFGG-GA2-1:2:33:2000:1284,GFGG-GA2-1:2:33:2000:1279,GFGG-GA2-1:2:33:2000:1283,
...

Or CIRI2 can search circRNAs without the annotation gtf:

perl CIRI2.pl -I test.sam -O outfile2 -F chr1.fa

The outfile2 is as follows:

circRNA_ID	chr	circRNA_start	circRNA_end	#junction_reads	SM_MS_SMS	#non_junction_reads	junction_reads_ratio	circRNA_type	gene_id	strand	junction_reads_ID
chr1:16770127|16775696	chr1	16770127	16775696	8	5_6_0	192	0.077	n/a	/n/a	+	GFGG-GA2-1:2:33:2000:1585,GFGG-GA2-1:2:33:2000:1587,GFGG-GA2-1:2:33:2000:1589,GFGG-GA2-1:2:33:2000:1590,GFGG-GA2-1:2:33:2000:1576,GFGG-GA2-1:2:33:2000:1580,GFGG-GA2-1:2:33:2000:1583,GFGG-GA2-1:2:33:2000:1593,
chr1:16775588|16778510	chr1	16775588	16778510	6	5_5_0	203	0.056	n/a	/n/a	+	GFGG-GA2-1:2:33:2000:1276,GFGG-GA2-1:2:33:2000:1277,GFGG-GA2-1:2:33:2000:1280,GFGG-GA2-1:2:33:2000:1284,GFGG-GA2-1:2:33:2000:1279,GFGG-GA2-1:2:33:2000:1283,
...

Columns of output file are split by tabs (”\t” in shell and perl).
Each column gives information of a predicted circRNA:

	Column
	Description

	1
	ID of a predicted circRNA in the pattern of "chr:start

	2
	chromosome of a predicted circRNA

	3
	start loci of a predicted circRNA on the chromosome

	4
	end loci of a predicted circRNA on the chromosome

	5
	circular junction read (also called as back-spliced junction read) count of a predicted circRNA

	6
	unique CIGAR types of a predicted circRNA. For example, a circRNAs have three junction reads: read A (80M20S, 80S20M), read B (80M20S, 80S20M), read C (40M60S, 40S30M30S, 70S30M), then its has two SM types (80S20M, 70S30M), two MS types (80M20S, 70M30S) and one SMS type (40S30M30S). Thus its SM_MS_SMS should be 2_2_1.

	7
	non-junction read count of a predicted circRNA that mapped across the circular junction but consistent with linear RNA instead of being back-spliced

	8
	ratio of circular junction reads calculated by 2#junction_reads/(2#junction_reads+#non_junction_reads). #junction_reads is multiplied by two because a junction read is generated from two ends of circular junction but only counted once while a non-junction read is from one end. It has to be mentioned that the non-junction reads are still possibly from another larger circRNA, so the junction_reads_ratio based on it may be an inaccurate estimation of relative expression of the circRNA.

	9
	type of a circRNA according to positions of its two ends on chromosome (exon, intron or intergenic_region; only available when annotation file is provided)

	10
	ID of the gene(s) where an exonic or intronic circRNA locates

	11
	strand info of a predicted circRNAs (new in CIRI2)

	12
	all of the circular junction read IDs (split by ",")

Running time and summary are recorded in oufile.log.

Test of CIRI2

You can also test CIRI2 using the framework added since version 2.0.5, though the test itself is not required for running CIRI2. If you test CIRI2 using this framework, please note modules Test::More and Test::Class as well as Perl 5.10 or higher will be needed.

Enter the directory and type as follows in your terminal:

perl data/test_CIRI.pl

Q&A

(1) How to use multiple threads in CIRI2?

CIRI2 supports multi-thread. To use it, just designate thread number using the argument -T.

It should be noted that using multiple threads will inevitably need more RAM due to the design of parallel Perl, although we have optimized RAM utility in CIRI2.

As a suggestion, please choose to use multi-thread if you are using moderate or high-performance server, which will largely reduce running time for large data sets. For reference, it usually takes no more than 4 hours for 40 Gb data (SAM file >100 Gb) generated from RNaseR treated sample using 4 threads.

If you only have a mini-server or even a 16Gb-RAM iMac, you can still use CIRI2 without paralleling to complete processing large data sets in acceptable time. It usually takes no more than 10 hours to process the above data set using single thread.

We do not recommend to use more than 20 threads in CIRI2, which will cost a large RAM but indeed speed up little.

(2) How to set parameters in BWA-MEM and CIRI2 for different data?

An important argument of BWA-MEM for junction read mapping is -T, which gives the threshold of alignment score of output.

Our simulation study shows that a lower -T than default (30) can improve sensitivity of CIRI2. We recommend -T 19 for most data set (such as read length ≥60).

We have applied CIRI2 to simulated data and real data. Here are some recommended parameters for short or single-end reads.

	Single-end reads result in higher FDR comparing to paired-end reads for lack of PEM information as one of filters when using default parameters. Thus we provided parameter -U (e.g. -U 15), to set mapping quality thresholds of a junction read and help control FDR.

	Although short read length (<60 bp) may lead to lower sensitivity, alteration of parameters for BWA-MEM (e.g. -k 15 and -T 15) to allow alignments for low mapping scores can improve performance for this type of sequencing data.

(3) How to generate a genome annotation file for non-model organisms.

If the genome you use does not have annotation in ensembl, we would recommend you to convert the annotated file to one of the following formats.

	gtf format:

chr1 HAVANA gene 11869 14412 . + . gene_id "ENSG00000223972.4"; transcript_id "ENSG00000223972.4"; gene_type "pseudogene"; gene_status "KNOWN"; gene_name "DDX11L1"; transcript_type "pseudogene"; transcript_status "KNOWN"; transcript_name "DDX11L1"; level 2; havana_gene "OTTHUMG00000000961.2";
chr1 HAVANA transcript 11869 14409 . + . gene_id "ENSG00000223972.4"; transcript_id "ENST00000456328.2"; gene_type "pseudogene"; gene_status "KNOWN"; gene_name "DDX11L1"; transcript_type "processed_transcript"; transcript_status "KNOWN"; transcript_name "DDX11L1-002"; level 2; tag "basic"; havana_gene "OTTHUMG00000000961.2"; havana_transcript "OTTHUMT00000362751.1";
chr1 HAVANA exon 11869 12227 . + . gene_id "ENSG00000223972.4"; transcript_id "ENST00000456328.2"; gene_type "pseudogene"; gene_status "KNOWN"; gene_name "DDX11L1"; transcript_type "processed_transcript"; transcript_status "KNOWN"; transcript_name "DDX11L1-002"; exon_number 1; exon_id "ENSE00002234944.1"; level 2; tag "basic"; havana_gene "OTTHUMG00000000961.2"; havana_transcript "OTTHUMT00000362751.1";

The last column (column 9) should contains the key words such as “gene_id” and “transcript_id”, and each of them is split by a “; “.

	gff format:

AC_000023.1 RefSeq region 1 202526509 . + . ID=id0;Name=1;Dbxref=taxon:10090;chromosome=1;gbkey=Src;genome=chromosome;mol_type=genomic DNA;strain=mixed
AC_000023.1 BestRefSeq gene 3222752 3677460 . - . ID=gene0;Name=Xkr4;Dbxref=GeneID:497097,MGI:3528744;description=X Kell blood group precursor related family member 4;gbkey=Gene;gene=Xkr4;gene_synonym=AY534250,Gm210,mKIAA1889,XRG4;partial=true
AC_000023.1 BestRefSeq mRNA 3222752 3677460 . - . ID=rna0;Name=NM_001011874.1;Parent=gene0;Note=The RefSeq transcript aligns at 78%25 coverage compared to this genomic sequence;Dbxref=GeneID:497097,Genbank:NM_001011874.1,MGI:3528744;exception=annotated by transcript or proteomic data;gbkey=mRNA;gene=Xkr4;product=X Kell blood group precursor related family member 4;transcript_id=NM_001011874.1
AC_000023.1 BestRefSeq exon 3677303 3677460 . - . ID=id1;Parent=rna0;Note=The RefSeq transcript aligns at 78%25 coverage compared to this genomic sequence;Dbxref=GeneID:497097,Genbank:NM_001011874.1,MGI:3528744;exception=annotated by transcript or proteomic data;gbkey=mRNA;gene=Xkr4;product=X Kell blood group precursor related family member 4;transcript_id=NM_001011874.1

The last column (column 9) should contains the key words such as “gene=” and “transcript_id=”, and each of them is split by a “;”.

	another gff format:

Chr1 TAIR10 chromosome 1 30427671 . . . ID=Chr1;Name=Chr1
Chr1 TAIR10 gene 3631 5899 . + . ID=AT1G01010;Note=protein_coding_gene;Name=AT1G01010
Chr1 TAIR10 mRNA 3631 5899 . + . ID=AT1G01010.1;Parent=AT1G01010;Name=AT1G01010.1;Index=1
Chr1 TAIR10 protein 3760 5630 . + . ID=AT1G01010.1-Protein;Name=AT1G01010.1;Derives_from=AT1G01010.1
Chr1 TAIR10 exon 3631 3913 . + . Parent=AT1G01010.1
Chr1 TAIR10 five_prime_UTR 3631 3759 . + . Parent=AT1G01010.1

The last column (column 9) should contains the key words such as “Parent=”, and each of them is split by a “;”.

Any questions about CIRI2 please mail to gaoyuan06@mails.ucas.ac.cn.

About

CIRI-AS is a detection tool for circRNA internal components and alternative splicing events.

Usage

How to run CIRI-AS

	with annotation as input:

perl CIRI_AS.pl -S in.sam -C in.ciri -O output -F ref.fa (-R ref_dir/) -A anno.gtf

	without annotation as input:

perl CIRI_AS.pl -S in.sam -C in.ciri -O output -F ref.fa (-R ref_dir/)

Commands and arguments

The arguments of CIRI-AS are as followings:

--sam/-S			input SAM file (required; generated by BWA-MEM using PAIRED END mode)
--ciri/-C			input circRNA list (required; generated by CIRI)
--out/-O			prefix of output files (required)
--ref_dir/-R		directory of reference sequences (Please make sure FASTA files in this directory are the same ones provided to CIRI. Either this argument or --ref-file/-F is required.)
--ref_file/-F		FASTA file of all reference sequences (Please make sure this file is the same one provided to CIRI. Either this argument or --ref-dir/-R is required.)
--anno/-A			GTF formatted annotation file (optional)
--output_all/-D	if output all processing info (Choose 'yes' would require more disk space. default: no)
--log/-G			output log file name (optional)
--help/-H			show help information

Preparation for using CIRI-AS

CIRI-AS detects circRNAs internal components and alternative splicing events by processing SAM file generated by BWA-MEM as well as circRNA list generated by CIRI (please see manual of CIRI for its usage details).

CIRI-AS is applicable only to paired-end sequencing data.

Annotation formats

When annotation file is provided, CIRI_AS can calculate insert length and provide correction value of psi for alternative spliced exons accordingly.

Like CIRI, CIRI-AS can understand GTF/GFF formatted annotation.

We recommend .gtf annotations generated by ensembl. Here is the link for their latest annotations of model organisms: ftp://ftp.ensembl.org/pub/current_gtf

Details of annotation format please see manual of CIRI.

Please make sure you are using exactly the same version of genomic sequences and their annotations when running CIRI-AS.

An example of running CIRI-AS

Before we start, please make sure you have installed Perl 5.12 or higher and use Mac OS X or Linux operation system.

Please download CIRI-AS and test_data_CIRI_AS.zip and then gunzip the four files in test_data_CIRI_AS.zip.

	test.sam is a SAM file of alignment records generated by BWA-MEM. The only parameter of BWA-MEM was -T 19.

	test.ciri is a circRNA list generated by CIRI by processing test.sam using default parameters.

	chr1.fa is the FASTA file of hg19 chromosome 1 downloaded from UCSC and chr1.gtf is annotation for chromosome 1 extracted from version 18 gencode gtf file.

Enter the directory and type as following in your terminal:

perl CIRI_AS.pl -S test.sam -C test.ciri -O outfile -F chr1.fa -A chr1.gtf

Or without the annotation gtf:

perl CIRI_AS.pl -S test.sam -C test.ciri -O outfile -F chr1.fa

CIRI-AS can finish detection within a few minutes, and you will see the following output file:

outfile.list
outfile_AS.list

Columns of output file are split by tabs (”\t” in perl).

for outfile.list:

Each column gives information of detected cirexons and corresponding circRNAs.

	#start_supporting_BSJ_read indicates the count of BSJ read pairs that support the start of this cirexon.

	#end_supporting_BSJ_read indicates the count of BSJ read pairs that support the end of this cirexon.

	sequencing_depth_median indicates the median of sequencing depth within the cirexon. It should be noted that the sequencing depth may also contain sequencing for linear counterparts.

for outfile_AS.list:

	Each column gives information of detected alternative splicing events within circRNAs.

About

Manual of CIRI-full v2.0

If you have any questions, please contact

	Yi Zheng @ Beijing Institutes of Life Science, Chinese Academy of Sciences.

	Email: zhengyi12@mails.ucas.ac.cn

CIRI-full is an accurate, high-throughput approach that uses both BSJ and reverse overlap (RO) features to reconstruct and quantify full-length circular RNAs from RNA-seq data sets. In CIRI-full, the BSJ feature is employed to detect cirexons and to determine the boundaries of circRNAs. The RO feature, deduced from the overlapped sequence of paired-end reads, is used to explore the detailed landscape within boundary sites. The alignments of both BSJ & RO merged reads will be visualized. The relative abundance of isoforms within one circRNA will be estimated according to the coverage and spliced events of BSJ & RO merged reads.

Installation

CIRI-full is developed in JAVA, and it can be performed in any system which has Java SE Runtime Environment.It requires:

bwa:		A read mapping tool, which generates SAM file for CIRI-full, CIRI & CIRI-AS https://sourceforge.net/projects/bio-bwa/files/
CIRI2:		A circRNA detection tool https://sourceforge.net/projects/ciri/
CIRI-AS:	A tool to detect cirexon and alternative splicing events in circRNAs https://sourceforge.net/projects/ciri/

CIRI2 and CIRI-AS are already packed with the CIRI-full software.

After downloading the CIRI-full package, you can extract it by typing:

unzip CIRI-full.zip	cd CIRI-full2. Preparation for running CIRI-full

Before running CIRI-full, you need to run CIRI and CIRI-AS to detect circRNAs and their associated BSJs and cirexons from your sequence data.

Here is a recommend protocol to run CIRI and CIRI-AS:

Index the reference genome:
bwa index -a bwtsw reference.fa
Split mapping using bwa-mem:
bwa mem -T 19 -t number_thread reference.fa read_1.fq read_2.fq > read.sam
2.3 Running CIRI & CIRI-AS
perl CIRI.pl -I read.sam -O prefix.ciri -F reference.fa -A annotation.gtf -T number_thread
perl CIRI_AS.pl -S read.sam -C prefix.ciri -F reference.fa -A annotation.gtf -O prefix -D yes

For detailed instructions on above tools, please read the manuals of bwa, CIRI and CIRI-AS.

Running CIRI-full pipeline

The CIRI-full Pipeline module is an automatic pipeline for detecting and reconstructing circRNAs. This pipeline includes CIRI, CIRI-AS and CIRI-full tools, which will finally generate reconstructed full-length circRNA sequences and the annotation of all identified circRNAs.

Before running the Pipeline module, please make sure that bwa is added to $PATH

The Pipeline module runs from a command line as follows:

java –jar CIRI-full.jar Pipeline [options]

Options:

-1	reads1 of paired-end reads (required, equal length, fastq or fastq.gz format)
-2	reads2 of paired-end reads (required, equal length, fastq or fastq.gz format)
-r	reference genome in fasta format, the same file used in preparation step when building bwa index (required).
-a	annotation file of reference genome in GTF format (optional).
-o	prefix of output files (optional, default: out)
-d	directory of output files (required)
-t	number of threads used in CIRI and bwa mem (optional, default: 1)	
-0	output all circRNAs including those with only one BSJ read support (optional, option for CIRI)

Four folders will be created under the dictionary set by -d option, CIRI_output/, CIRI-AS_output/, CIRI-full_output/ and sam/, which contain the output files of CIRI, CIRI-AS, CIRI-full and bwa.

For detailed information of these files, please refer to the following instructions.

Running CIRI-full step-by-step

CIRI-full includes three modules, RO1, RO2 and Merge. These modules should be performed sequentially in the following order: RO1, RO2 and Merge.

The RO1 module

This module is designed to identify 5’-RO feature on paired-end reads from RNA-seq data set and then, merge these RO containing paired-end reads into long single-end reads.

The RO1 module runs from a command line as follows:

java -jar CIRI_full.jar RO1 [options]

Options:

-1	read1 of paired-end reads (required, equal length)	-2	read2 of paired-end reads (required, equal length)
-o	prefix of output files (optional,default: out)
-minM	sets the number of minimum 5’-RO length (optional, integer, default 13)
-minI	sets the minimum identity percentage of 5’-RO alignment (optional, default 95)

RO1 module will generate two output files:

prefix_ro1_align.txt		
prefix_ro1.fq

Description of prefix_ro1_align.txt:

Each column gives the alignment information of each read pair which contain 5’-RO feature.

	#read_id

	#alignment_identity

	#start_position_on_read1

	#end_position_on_read1

	#start_position_on_read2

	#end_position_on_read2

	#read_length

Description of prefix_ro1.fq

Read pairs with 5’-RO feature are merged into long sequences in FASTQ format. These sequences are taken as candidate RO merged-reads and will be filtered in the following steps.

The RO2 module

The RO2 module is to analyze the alignment results of candidate RO merged-reads and screen out authentic ones for reconstructing full-length circRNAs.

Data preparation before running the RO2 module:

RO2 module filters RO merged-reads based on the SAM file generated by bwa-mem.

A recommended protocol for running bwa-mem:

bwa index -a bwtsw reference.fa	bwa mem -T 19 reference.fa prefix_ro1.fq > prefix_ro1.sam

Note that prefix_ro1.fq file is the output file in the previous step (the RO1 module).

The RO2 module runs from a command line as follows:

java -jar CIRI_full.jar RO2 [options]Options:

Options:

-r	reference genome in fasta format, the same file used in the preparation step when building bwa index (required).
-s	SAM alignment of prefix.ro1.fq generated by bwa mem (required).
-l	the read length of given RNA-seq paired end data (required).
-range	maximum spanning distance of circRNAs on the reference(optional, integer, default 100000).
-o	prefix of output files (required)

RO2 module will generate following output files:

prefix_ro2.sam
prefix_ro2_info.list

Description of prefix_ro2.sam:

This file is the SAM alignment of authentic RO reads.

Description of prefix_ro2_info.list:

This file gives the detailed alignment information of authentic RO reads.

Columns are separated by tabs:

	#Read_ID

	#Chr

	#BSJ_position

	#Strand

	#Reconstructed_state

	#Cirexon

	#Mapping_order

	#Splice_site_state+

	#Splice_site_state-

#Splice_site_state+/- represents the mapping boundary deviation from the GT/AG splicing site, where -1 indicates that GT/AG splicing site cannot be detected on the current strand; positive value represents the distance between GT/AG splice site and split mapping position.

The Merge module

The Merge module combines the results of RO2 and CIRI-AS to reconstruct full-length circRNAs.

The Merge module runs from a command line as follows:

java –jar CIRI_full.jar Merge [options]

Options:

-a	annotation file of the reference genome in GTF format (optional).
-c	output file of CIRI (required)
-as	output_all file generated in CIRI-AS (using -D yes argument. This file has a suffix “_jav.list”) (required)
-ro	RO read information file (prefix_ro2_info.list) generated by RO2 module (required)
-o	prefix of output files (required)
-r	reference genome file (in FASTA format) (required)

The Merge module will generate three output files.

prefix_merge_circRNA_detail.anno

Description of prefix_merge_circRNA_detail.anno

This file contains mapping information of BSJ reads (detected by CIRI) and RO merged-reads (detected by RO). Reads are clustered according to the BSJ position. Columns are separated by tabs:

	#BSJ

	#Chr

	#Start

	#End

	#GTF-annotated_exon

	#Cirexon

	#Coveage

	#BSJ_reads_information

	#RO_reads_information

	#Original_gene

Running CIRI-vis

CIRI-vis is a tool for visualizing alignments of BSJ & RO merged reads and estimating the related abundance of isoforms according to the output of CIRI-full (prefix_merge_circRNA_detail.anno) or CIRI-AS (prefix_jav.list).

CIRI-vis.jar runs from a command line as follows:

java -jar CIRI-vis.jar [Options]

Options:

-i		The path of input file of CIRI-vis. (required)
-l		The path of library length file. (required for isoform quantification)
-r		The path of reference genome sequence in FASTA format. (required for output circRNA sequence)
-list		The list of chosen circRNA BSJ. (optional)
-d		The dictionary of output. Default currentdir/stdir
-max	The maximum expression (BSJ reads number) of circRNA that displayed by CIRI-vis. Default 999999999
-min	The minimum expression (BSJ reads number) of circRNA that displayed by CIRI-vis. Default 10. **Note: please only use one of -min, -exp, -rank**
-rank	Only display the expression top X% of circRNA
-exp		Only display the top expression circRNA that contain X% of BSJ reads.
-iso		The maximum number of considering isoform, default 10. High value will make the quantification slower

CIRI-vis will output a set of pdf file, a “.list” file and a “.fa” file(if reference genome file is available) in a new created folder(set by “-d” parameter):

	One pdf file display circRNA isoforms on one BSJ.

	“.list” file shows detail information of each isoform.

	“.fa” file shows the sequences of fully reconstructed circRNA isoforms.

Description of prefix.list:

This file gives the detailed information of circRNA isoforms. Columns are separated by tabs:

	Columns
	Description

	1
	The name of pdf file.

	2
	ID of the BSJ position of circRNA isoform in the pattern of "chr:start

	3
	chromosome of a predicted circRNA isoform

	4
	start loci of a predicted circRNA isoform on the chromosome

	5
	end loci of a predicted circRNA isoform on the chromosome

	6
	circular junction read (also called as back-spliced junction read) count of a predicted circRNA

	7
	the serial number of isoform in circRNA

	8
	the estimate BSJ read count of this predicted isoform.

	9
	the minimum length of this predicted isoform.

	10
	whether this predicted isoform is fully reconstructed.

	11
	The cirexon position in this predicted isoform, “0-0” represent for the breakpoint during reconstruction.

Description of prefix.fa:

This FASTA format file will be generated if reference genome sequence is available. It contains the sequence of fully reconstructed isoform. They were named in this format:

>(Image_name)#(BSJ) length=(isoform_length) (isoform_BSJ_read_count)/(circRNA_BSJ_read_count)

If you want to display only a subset of circRNA, please use parameter “-list” to give CIRI-vis a list of BSJ position. The format should be like:

chr10:74474869|74475660
chr8:141856359|141900868

Notes:

	IF you ran CIRI-full Pipeline in previous step, the input file will be named prefix_merge_circRNA_detail.anno under CIRI-full_output folder.

	IF you only ran CIRI-AS with ‘-d yes’ parameter in previous step, the input file will be named prefix_jav.list under your CIRI-AS output folder.

	Library length file is necessary for isoform expression estimation. library length file will be prefix _library_length.list under your CIRI-AS output folder

How to run the test data set using CIRI-full

Test data sets (FASTQ file, annotation file and reference sequence) are packaged with the CIRI-full software, which can be found in the “CIRI-full_test/“ folder. Temporary and final results are given in the “CIRI-full/test_output/” folder.

Here are the commands for running the test data sets:

cd CIRI-full_v2.0/CIRI-full_test/
bwa index test_ref.fajava -jar ../CIRI-full.jar Pipeline -1 test_1.fq.gz -2 test_2.fq.gz -a test_anno.gtf -r test_ref.fa -d test_output/ -o testunset DISPLAY
java -jar ../CIRI-vis.jar -i test_output/CIRI-full_output/test_merge_circRNA_detail.anno -l ../CIRI-vis_test/test_library_length.list -r test_ref.fa –d test_output/CIRI-vis_out -min 1

If you want to run CIRI-full step by step, you can use the following commands:

cd CIRI-full_v2.0/CIRI-full_test/
mkdir test_output
bwa index test_ref.fa
bwa mem -T 19 test_ref.fa test_1.fq.gz test_2.fq.gz > test_output/test.sam
perl ../bin/CIRI2.pl -I test_output/test.sam -O test_output/test.ciri -F test_ref.fa -A test_anno.gtf
perl ../bin/CIRI_AS_v1.2.pl -S test_output/test.sam -C test_output/test.ciri -F test_ref.fa -A test_anno.gtf -O test_output/test -D yes
java -jar ../CIRI-full.jar RO1 -1 test_1.fq.gz -2 test_2.fq.gz -o test_output/test
bwa mem -T 19 test_ref.fa test_output/test_ro1.fq > test_output/test_ro1.sam
java -jar ../CIRI-full.jar RO2 -r test_ref.fa -s test_output/test_ro1.sam -l 250 -o test_output/test
java -jar ../CIRI-full.jar Merge -c test_output/test.ciri -as test_output/test_jav.list -ro test_output/test_ro2_info.list -a test_anno.gtf -r test_ref.fa -o test_output/test
unset DISPLAY
java -jar ../CIRI-vis.jar -i test_output/CIRI-full_output/test_merge_circRNA_detail.anno -l ../CIRI-vis_test/test_library_length.list -r test_ref.fa -min 1

Note: Please make sure you are using exactly the same version of genomic sequences and their annotations when running CIRI-full.

About

CIRI-vis is a tool for visualizing alignments of BSJ & RO merged reads and estimating the related abundance of isoforms according to the output of CIRI-full (prefix_merge_circRNA_detail.anno) or CIRI-AS (prefix_jav.list).

[image: CIRI-vis.png]

Author

Authors: Yi Zheng(zhengyi@biols.ac.cn), Fangqing Zhao(zhfq@biols.ac.cn)

Maintainer: Yi Zheng

Release Notes

	Version 1.4

Installation

Prerequisites

Softwares:
 JavaSE >= 1.6
 bwa
 CIRI2
 CIRI-AS
 CIRI-Full

Install CIRI-vis

CIRI-vis is developed in JAVA, and it can be performed in any system which has Java SE Runtime Environment.

CIRI-vis is already packed with the CIRI-full software under /bin.
After downloading the CIRI-full package, you can extract it by typing:

unzip CIRI-full_v2.0.zip

you can find CIRI-vis.jar in the folder.

Commands and Arguments

Running CIRI-vis

Input file requirements:

	IF you runned CIRI-full Pipeline in previous step, the input file will be named:XXX_merge_circRNA_detail.anno under CIRI-full_output folder

	IF you only run CIRI-AS with ‘-d yes’ parameter in previous step, the input file will be named XXX_jav.list under your CIRI-AS output folder

	Library length file is nessaracy for isoform expression estimation. library length file will be XXX_library_length.list under your CIRI-AS output folder

CIRI-vis.jar runs from a command line as follows:

Usage: java -jar CIRI-vis.jar [Options]

Options:

 -i	 The path of input file of CIRI-vis. (required)
 -l The path of library length file. (required for isoform quantification)
 -r The path of reference genome sequence in FASTA format. (required for output circRNA sequence)
 -list The list of choosen circRNA BSJ.(It is needed when more than one sample)
 -d The dictionary of output. Default currentdir/stdir
 -o The prefix of output. Default stout (optional)
 -type The format of figure. you can select pdf or svg or both. Default pdf (optional)
 -max The maximum expression (BSJ reads number) of circRNA that displayed by CIRI-vis. Default 999999999 (optional)
 -min The minimum expression (BSJ reads number) of circRNA that displayed by CIRI-vis. Default 5. Note: please only use one of -min, -exp, -rank (optional)
 -rank Only display the expression top X% of circRNA (optional)
 -exp Only display the top expression circRNA that contain X% of BSJ reads. (optional)
 -iso The maximum number of considering isoform, default 10. High value will make the quantification slower (optional)
 -ran Set random seed, default 0.(optional)

Examples:

For one sample

java -jar CIRI-vis.jar -i A_merge_circRNA_detail.anno -l A_library_length.list -r Ref.fa -d out -o prefix

For more than one samples

java -jar CIRI-vis.jar -i A_merge_circRNA_detail.anno B_merge_circRNA_detail.anno -l A_library_length.list B_library_length.list -r Ref.fa -d out -o prefix -list test.txt

The format of the “test.txt” (input of -list) should be:

chr10:74474869|74475660
chr8:141856359|141900868	
...

Output files

Description of prefix.list:

This file gives the detailed information of circRNA isoforms. Columns are separated by tabs:

	Columns
	Description

	Image_ID
	The name of pdf file.

	Circle_ID
	ID of the BSJ position of circRNA isoform in the pattern of "chr:start

	Chr
	chromosome of a predicted circRNA isoform

	start
	start loci of a predicted circRNA isoform on the chromosome

	end
	end loci of a predicted circRNA isoform on the chromosome

	total_exp
	circular junction read (also called as back-spliced junction read) count of a predicted circRNA

	isoform_number
	the serial number of isoform in circRNA

	isoform_exp
	the estimate BSJ read count of this predicted isoform.

	isoform_length
	the minimum length of this predicted isoform.

	isoform_state
	whether this predicted isoform is fully reconstructed.

	strain
	strain of circRNA (+/-)

	gene_id
	gene name that the circRNA located in

	isoform_cirexon
	The cirexon position in this predicted isoform, "0-0" represent for the breakpoint during reconstruction.

When more than one sample

	Columns
	Description

	Image_ID
	The name of pdf file.

	Sample_name
	Name of input sample (appear only when more than one sample)

	Circle_ID
	ID of the BSJ position of circRNA isoform in the pattern of "chr:start

	Chr
	chromosome of a predicted circRNA isoform

	start
	start loci of a predicted circRNA isoform on the chromosome

	end
	end loci of a predicted circRNA isoform on the chromosome

	total_exp
	circular junction read (also called as back-spliced junction read) count of a predicted circRNA

	isoform_number
	the serial number of isoform in circRNA

	isoform_exp
	the estimate BSJ read count of this predicted isoform.

	isoform_length
	the minimum length of this predicted isoform.

	estimated_isoform_read_count
	The estimated total number of read that on this isoform (including BSJ and nonBSJ reads),

	isoform_state
	whether this predicted isoform is fully reconstructed.

	strain
	strain of circRNA (+/-)

	gene_id
	gene name that the circRNA located in

	isoform_cirexon
	The cirexon position in this predicted isoform, "0-0" represent for the breakpoint during reconstruction.

Description of prefix.fa:

This FASTA format file will be generated if reference genome sequence is available. It contains the sequence of fully reconstructed isoform. They were named in this format:

>(Image_name)#(BSJ) length=(isoform_length) (isoform_BSJ_read_count)/(circRNA_BSJ_read_count)

Example Usage

Test data sets (FASTQ file, annotation file and reference sequence) are packaged with the CIRI-full software, which can be found in the CIRI-full_test/ folder. Temporary and final results are given in the CIRI-full/test_output/ folder.

Here are the commands for running the test data sets:

cd CIRI-full_v2.0/CIRI-full_test/
bwa index test_ref.fa
java -jar ../CIRI-full.jar Pipeline -1 test_1.fq.gz -2 test_2.fq.gz -a test_anno.gtf -r test_ref.fa -d test_output/ -o test
unset DISPLAY
java -jar CIRI-vis.jar -i test_output/CIRI-full_output/test_merge_circRNA_detail.anno -l ../CIRI-vis_test/test_library_length.list -r test_ref.fa -d test_output/CIRI-vis_out -min 1

About

CIRIquant: comprehensive toolkit for circRNA quantification and differential expression analysis

[image: Build Status] [https://staging.travis-ci.com/bioinfo-biols/CIRIquant]
[image: GitHub release (latest by date)]
[image: The MIT License] [https://github.com/bioinfo-biols/CIRIquant/blob/master/LICENSE]
[image: GitHub All Releases]
[image: SourceForge]
[image: Documentation Status] [https://ciri-cookbook.readthedocs.io/en/latest/?badge=latest]

CIRIquant is a comprehensive analysis pipeline for circRNA detection and quantification in RNA-Seq data

[image: CIRIquant.png]

Author

Authors: Jinyang Zhang(zhangjinyang@biols.ac.cn), Fangqing Zhao(zhfq@biols.ac.cn)

Maintainer: Jinyang Zhang

Release Notes

	Version 1.1: Added support for stranded library and GFF3 format input.

	Version 1.0: The first released version of CIRIquant.

License

The code is released under the MIT License. See the LICENSE file for more detail.

Citing CIRIquant

	Zhang, J., Chen, S., Yang, J. et al. Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat Commun 11, 90 (2020) doi:10.1038/s41467-019-13840-9 [https://doi.org/10.1038/s41467-019-13840-9]

Installation

NOTES: Only python2 is supported

Prerequisites

Softwares:
- bwa
- hisat2
- stringtie
- samtools >= 1.9 (*older version of samtools may use deprecated parameters in `sort` and `index` commands*)

Python packages:
- PyYAML
- argparse
- pysam
- numpy
- scipy
- scikit-learn

Use the released version (Recommended)

Download the latest released version of CIRIquant from GitHub [https://github.com/Kevinzjy/CIRIquant/releases]

The released package is a packed conda environment including all dependencie, make sure you have installed anaconda in your environment

Download packed package
wget https://github.com/bioinfo-biols/CIRIquant/releases/download/v1.1.3/CIRIquant_v1.1.3.tar.gz
mkdir -p CIRIquant_env
tar zxvf CIRIquant_v1.1.3.tar.gz -C CIRIquant_env

Configuration environments (required)
conda activate ./CIRIquant_env
cd CIRIquant_env
make

Activate CIRIquant environment and test

conda activate /path/to/CIRIquant_env
which CIRIquant

Install CIRIquant and dependencies using conda (Not recommended)

Save the following content to a file called environment.yml:

name: CIRI
channels:
- defaults
- bioconda
- conda-forge
dependencies:
- bioconda::bwa=0.7.17
- bioconda::hisat2=2.2.0
- bioconda::stringtie=2.1.1
- bioconda::samtools>=1.10
- bioconda::bioconductor-edger=3.28.0
- bioconda::bioconductor-limma=3.42.0
- conda-forge::r-statmod=1.4.35
- conda-forge::r-base=3.6
- conda-forge::r-optparse=1.6.6
- python=2.7.15
- pip=20.0.2
- perl=5.26.2
- pip:
 - CIRIquant>=1.1.2
 - numexpr==2.6.9
 - numpy==1.16.4
 - pysam==0.15.2
 - PyYAML==5.4
 - scikit-learn==0.20.3
 - scipy==1.2.2
 - argparse>=1.2.1

After you have saved the file just run:

this installs the dependencies specified in the yml file
conda env create -f environment.yml
this activates the conda environment
conda activate CIRI

this will return the path bwa, hisat2, stringtie or samtools are installed to
these paths need to be specified in the CIRI configuration file when running the tool
which bwa
which hisat2
which stringtie
which samtools

Install CIRIquant using pip

pip install CIRIquant

Install CIRIquant from source code

Use the setup.py for CIRIquant installation (clean install using virutalenv is highly recommended).

create and activate virtual env
pip install virtualenv
virtualenv -p /path/to/your/python2/executable venv
source ./venv/bin/activate

Install CIRIquant and its requirement automatically
tar zxvf CIRIquant.tar.gz
cd CIRIquant
python setup.py install

Manual installation of required pacakges is also supported
pip install -r requirements.txt

The package should take approximately 40 seconds to install on a normal computer.

Usage 1: circRNA quantifcation

Basic options

usage: CIRIquant [-h] [--config FILE] [-1 MATE1] [-2 MATE2] [-o DIR]
 [-p PREFIX] [-t INT] [-a INT] [-l INT] [--ciri3] [-v]
 [--version] [-e LOG] [--bed FILE] [--circ FILE] [--tool TOOL]
 [--RNaseR FILE] [--bam BAM] [--no-gene] [--no-fsj]
 [--bsj-file FILE]

optional arguments:
 -h, --help show this help message and exit
 --config FILE Config file in YAML format
 -1 MATE1, --read1 MATE1
 Input mate1 reads (for paired-end data)
 -2 MATE2, --read2 MATE2
 Input mate2 reads (for paired-end data)
 -o DIR, --out DIR Output directory, default: ./
 -p PREFIX, --prefix PREFIX
 Output sample prefix, default: input sample name
 -t INT, --threads INT
 Number of CPU threads, default: 4
 -a INT, --anchor INT Minimum anchor length for junction alignment, default:
 5
 -l INT, --library-type INT
 Library type, 0: unstranded, 1: read1 match the sense
 strand,2: read1 match the antisense strand, default: 0
 -v, --verbose Run in debugging mode
 --version show program's version number and exit
 -e LOG, --log LOG Log file, default: out_dir/prefix.log
 --bed FILE bed file for putative circRNAs (optional)
 --circ FILE circRNA prediction results from other softwares
 --tool TOOL circRNA prediction tool, required if --circ is
 provided
 --RNaseR FILE CIRIquant result of RNase R sample
 --bam BAM hisat2 alignment to reference genome
 --no-gene Skip stringtie estimation for gene abundance
 --no-fsj Skip FSJ extraction to reduce run time
 --bsj-file FILE output BSJ read IDs to file (optional)

NOTE:

	For now, –circ and –tool options support results from CIRI2 / CIRCexplorer2 / DCC / KNIFE / MapSplice / UROBORUS / circRNA_finder / find_circ

	For tools like DCC and circRNA_finder, please manually remove duplicated circRNAs with same junction postion but have opposite strands.

	Gene expression values are needed for normalization, do not use --no-gene if you need to run DE analysis afterwards.

Example YAML config

A YAML-formated config file is needed for CIRIquant to find software and reference needed.

A valid example of minimal config file:

reference:
 fasta: /home/zhangjy/Data/database/hg19.fa
 gtf: /home/zhangjy/Data/database/gencode.v19.annotation.gtf
 bwa_index: /home/zhangjy/Data/database/hg19/_BWAtmp/hg19
 hisat_index: /home/zhangjy/Data/database/hg19/_HISATtmp/hg19

An example of supported config file:

// Example of config file
name: hg19
tools:
 bwa: /home/zhangjy/bin/bwa
 hisat2: /home/zhangjy/bin/hisat2
 stringtie: /home/zhangjy/bin/stringtie
 samtools: /home/zhangjy/bin/samtools

reference:
 fasta: /home/zhangjy/Data/database/hg19.fa
 gtf: /home/zhangjy/Data/database/gencode.v19.annotation.gtf
 bwa_index: /home/zhangjy/Data/database/hg19/_BWAtmp/hg19
 hisat_index: /home/zhangjy/Data/database/hg19/_HISATtmp/hg19

	Key
	Description

	name
	the name of config file (optional)

	bwa
	the path of bwa (optional, defaults to bwa in $PATH)

	hisat2
	the path of hisat2 (optional, defaults to hisat2 in $PATH)

	stringtie
	the path of stringite (optional, defaults to stringtie in $PATH)

	samtools
	the path of samtools, samtools version below 1.3.1 is not supported (optional, defaults to samtools in $PATH)

	fasta
	reference genome fasta, a fai index by samtools faidx is also needed under the same directory

	gtf
	annotation file of reference genome in GTF/GFF3 format

	bwa_index
	prefix of BWA index for reference genome

	hisat_index
	prefix of HISAT2 index for reference genome

Example circRNA bed file

For quantification of user-provided circRNAs, a list of junction sites in bed format is required, the 4th column must be in “chrom:start|end” format. For example:

chr1 10000 10099 chr1:10000|10099 . +
chr1 31000 31200 chr1:31000|31200 . -

Example Usage

Recommended: Predict circRNAs using CIRI2 (packaged in CIRIquant)

CIRIquant -t 4 \
 -1 ./test_1.fq.gz \
 -2 ./test_2.fq.gz \
 --config ./chr1.yml \
 -o ./test \
 -p test

Quantify circRNAs using provided BED format input

CIRIquant -t 4 \
 -1 ./test_1.fq.gz \
 -2 ./test_2.fq.gz \
 --config ./chr1.yml \
 -o ./test \
 -p test \
 --bed your_circRNAs.bed

Quantify circRNAs using results from other tools

For example, if you have find_circ results of predicted circRNAs.

CIRIquant -t 4 \
 -1 ./test_1.fq.gz \
 -2 ./test_2.fq.gz \
 --config ./chr1.yml \
 -o ./test \
 -p test \
 --circ find_circ_results.txt \
 --tool find_circ

Output format

The main output of CIRIquant is a GTF file, that contains detailed information of
BSJ and FSJ reads of circRNAs and annotation of circRNA back-spliced regions in the attribute columns

Description of each columns’s value

	column
	name
	description

	1
	chrom
	chromosome / contig name

	2
	source
	CIRIquant

	3
	type
	circRNA

	4
	start
	5' back-spliced junction site

	5
	end
	3' back-spliced junction site

	6
	score
	CPM of circRNAs (#BSJ / #Mapped reads)

	7
	strand
	strand information

	8
	.
	.

	9
	attributes
	attributes seperated by semicolon

The attributes containing several pre-defined keys and values:

	key
	description

	circ_id
	name of circRNA

	circ_type
	circRNA types: exon / intron / intergenic

	bsj
	number of bsj reads

	fsj
	number of fsj reads

	junc_ratio
	circular to linear ratio: 2 * bsj / (2 * bsj + fsj)

	rnaser_bsj
	number of bsj reads in RNase R data (only when --RNaseR is specificed)

	rnaser_fsj
	number of fsj reads in RNase R data (only when --RNaseR is specificed)

	gene_id
	ensemble id of host gene

	gene_name
	HGNC symbol of host gene

	gene_type
	type of host gene in gtf file

Usage 2: RNase R effect correction

When you have both RNase R treated and untreated samples, CIRIquant can estimate the before-treatment expression levels of circRNAs detected in RNase R data.

In order to remove RNase R treatment effect, two steps are needed:

	Run CIRIquant with RNase R treated sample.

	Run CIRIquant with untreaded total RNA sample, specific --RNaseR option using the output gtf file in Step1

Then, CIRIquant will output estimated expression levels of circRNAs detected in RNaseR data, and the header lines will include additional information of RNase R treatment effciency.

Example usage

Step1. Run CIRIquant with RNase R treated data
CIRIquant --config ./hg19.yml \
 -1 ./RNaseR_treated_1.fq.gz \
 -2 ./RNaseR_treated_2.fq.gz \
 --no-gene \
 -o ./RNaseR_treated \
 -p RNaseR_treated \
 -t 6

Step2. Run CIRIquant with untreated total RNA
CIRIquant --config ./hg19.yml \
 -1 ./TotalRNA_1.fq.gz \
 -2 ./TotalRNA_2.fq.gz \
 -o ./TotalRNA \
 -p TotalRNA \
 -t 6 \
 --RNaseR ./RNaseR_treated/RNaseR_treated.gtf

Usage 3: Differential expression analysis

Study without biological replicate

For sample without replicate, the differential expression & differential splicing analysis is
performed using CIRI_DE

Usage:
 CIRI_DE [options] -n <control> -c <case> -o <out>

 <control> CIRIquant result of control sample
 <case> CIRIquant result of treatment cases
 <out> Output file

Options (defaults in parentheses):

 -p p value threshold for DE and DS score calculation (default: 0.05)
 -t numer of threads (default: 4)

Example usage:
 CIRI_DE -n control.gtf -c case.gtf -o CIRI_DE.tsv

The output format CIRI_DE is in the format below:

	column
	name
	description

	1
	circRNA_ID
	circRNA identifier

	2
	Case_BSJ
	number of BSJ reads in case

	3
	Case_FSJ
	number of FSJ reads in case

	4
	Case_Ratio
	junction ratio in case

	5
	Ctrl_BSJ
	number of BSJ reads in control

	6
	Ctrl_FSJ
	number of FSJ reads in control

	7
	Ctrl_Ratio
	junction ratio in control

	8
	DE_score
	differential expression score

	9
	DS_score
	differential splicing score

Study with biological replicates

For study with biological replicates, a customed analysis pipeline of edgeR is recommended and
we provide prep_CIRIquant to generate matrix of circRNA expression level / junction ratio and CIRI_DE_replicate
for DE analysis

Step1: Prepare CIRIquant output files

One should provide a text file listing sample information and path to CIRIquant output GTF files

CONTROL1 ./c1/c1.gtf C 1
CONTROL2 ./c2/c2.gtf C 2
CONTROL3 ./c3/c3.gtf C 3
CASE1 ./t1/t1.gtf T 1
CASE2 ./t2/t2.gtf T 2
CASE3 ./t3/t3.gtf T 3

The first three columns is required by default. For paired samples, you could also add a column of subject name.

	column
	description

	1
	sample name

	2
	path to CIRIquant output gtf

	3
	group ("C" for control, "T" for treatment)

	4
	subject (optional, only for paired samples)

Note: If you are planning to use CIRI_DE for differential expression, then group name in column 3 must be either “C” or “T”.

Then, run prep_CIRIquant to summarize the circRNA expression profile in all samples

Usage:
 prep_CIRIquant [options]

 -i the file of sample list
 --lib where to output library information
 --circ where to output circRNA annotation information
 --bsj where to output the circRNA expression matrix
 --ratio where to output the circRNA junction ratio matrix

Example:
 prep_CIRIquant -i sample.lst \
 --lib library_info.csv \
 --circ circRNA_info.csv \
 --bsj circRNA_bsj.csv \
 --ratio circRNA_ratio.csv

These count matrices (CSV files) can then be imported into R for use by DESeq2 and edgeR
(using the DESeqDataSetFromMatrix and DGEList functions, respectively).

Step2: Prepare StringTie output

The output of StringTie should locate under output_dir/gene/prefix_out.gtf. You need to use
prepDE.py [http://ccb.jhu.edu/software/stringtie/dl/prepDE.py] from stringTie to
generate the gene count matrix for normalization.

For example, one can provide a text file sample_gene.lst containing sample IDs and path to StringTie outputs:

CONTROL1 ./c1/gene/c1_out.gtf
CONTROL2 ./c2/gene/c2_out.gtf
CONTROL3 ./c3/gene/c3_out.gtf
CASE1 ./t1/gene/t1_out.gtf
CASE2 ./t2/gene/t2_out.gtf
CASE3 ./t3/gene/t3_out.gtf

Then, run prepDE.py -i sample_gene.lst and use gene_count_matrix.csv generated under current working directory
for further analysis.

Step3: Differential expression analysis

For differential analysis using CIRI_DE_replicate, you need to install a R environment and edgeR package from Bioconductor.

usage: CIRI_DE_replicate [-h] --lib FILE --bsj FILE --gene FILE --out
 FILE --out2 FILE

optional arguments:
 -h, --help show this help message and exit
 --lib FILE library information
 --bsj FILE circRNA expression matrix
 --gene FILE gene expression matrix
 --out FILE output result of circRNA differential expression analysis
 --out2 FILE output result of gene differential expression analysis

Example:
 CIRI_DE_replicate \
 --lib library_info.csv \
 --bsj circRNA_bsj.csv \
 --gene gene_count_matrix.csv \
 --out circRNA_de.tsv \
 --out2 gene_de.tsv

Please be noted that the output results is unfiltered,
and you could apply a more stringent filter on expression values to get a more convincing result.

Test data

Download test dataset

Test dataset can be downloaded from Github [https://github.com/Kevinzjy/CIRIquant/releases/download/v0.2.0/test_data.tar.gz].

wget https://github.com/Kevinzjy/CIRIquant/releases/download/v0.2.0/test_data.tar.gz
tar zxvf test_data.tar.gz

circRNA quantification

Folder quant contain the test dataset for circRNA quantification.

1. Generate hisat2 and bwa index

cd ./test_data/quant
bwa index -a bwtsw -p chr1.fa chr1.fa
hisat2-build ./chr1.fa ./chr1.fa

2. Customize the configuration

Replace the path of bwa/hisat2/stringtie/samtools in chr1.yml with your own version.

3. Run test dataset

Test data set can be retrived under test_data/quant folder, you can replace the path of required software in the chr1.yml with your own version

CIRIquant -t 4 \
 -1 ./test_1.fq.gz \
 -2 ./test_2.fq.gz \
 --config ./chr1.yml \
 --no-gene \
 -o ./test \
 -p test

The demo dataset should take approximately 5 minutes on a personal computer. It has been tested on
my PC with Intel i7-8700 processor and 16G of memory, running Ubuntu 18.04 LTS.

The structure of output directory ./test should be like this:

test
├── align
│ ├── test.bam
│ ├── test.sorted.bam
│ └── test.sorted.bam.bai
├── circ
│ ├── test.ciri
│ ├── test.ciri.bed
│ ├── test_denovo.bam
│ ├── test_denovo.sorted.bam
│ ├── test_denovo.sorted.bam.bai
│ ├── test_index.1.ht2
│ ├── test_index.2.ht2
│ ├── test_index.3.ht2
│ ├── test_index.4.ht2
│ ├── test_index.5.ht2
│ ├── test_index.6.ht2
│ ├── test_index.7.ht2
│ ├── test_index.8.ht2
│ ├── test_index.fa
│ └── test_unmapped.sam
├── CIRIerror.log
├── test.bed
├── test.gtf
└── test.log

Then, you can check the main output in ./test/test.gtf.

Differential expression analysis

Folder DE contain the test dataset for differential expression analysis

cd ./test_data/DE

Test for DE-score and DS-score calculation
CIRI_DE -n ctrl.gtf \
 -c case.gtf \
 -o CIRI_DE.tsv

Test for RNase R correction
CIRI_DE -n ctrl_corrected.gtf \
 -c case_corrected.gtf \
 -o CIRI_DE_corrected.tsv

About

CIRI-long: circular RNA identifier using long-read sequencing data

[image: Build Status] [https://github.com/bioinfo-biols/CIRI-long/actions/workflows/test.yml]
[image: GitHub release (latest by date)]
[image: The MIT License] [https://github.com/bioinfo-biols/CIRI-long/blob/master/LICENSE]
[image: GitHub All Releases]
[image: Documentation Status] [https://ciri-cookbook.readthedocs.io/en/latest/?badge=latest]

Circular RNA Identification for Long-Reads Nanopore Sequencing Data

[image: CIRI-long.png]

Author

Authors: Jinyang Zhang(zhangjinyang@biols.ac.cn), Fangqing Zhao(zhfq@biols.ac.cn)

Maintainer: Jinyang Zhang

Release Notes

	version 1.1.0: Add convert_bed.py, update pyccs dependency, fixed bugs

	version 1.0.3: Add output of circRNA isoform usage index, fixed bugs

	version 1.0.2: Add fast mode for ccs detection and option for user-provided circRNA annotation

	version 1.0.1: Fixed bug

	version 1.0: First released version

License

The code is released under the MIT License. See the LICENSE file for more detail

Citing CIRI-long

	Zhang, J., Hou, L., Zuo, Z., Ji, P., Zhang, X., Xue, Y., & Zhao, F. (2021). Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nature Biotechnology. https://doi.org/10.1038/s41587-021-00842-6

Installation

Dependency

	gcc 4.8+ or clang 3.4+ and cmake 3.2+ is needed

	Only python>=3.7 is supported

	CIRI-long requires pysam lib, which need executable binary and header of zlib, bzip2, xz, please refer to documentation of pysam for installation instructions

	all python dependencies are listed in requirements.txt

	samtools version 1.9 or higher

	python binding of minimap2

Install CIRI-long from source code

Installation under virtualenv is highly recommended. You can simply clone the whole repository, then use make to start a complete installation

git clone https://github.com/bioinfo-biols/CIRI-long.git CIRI-long
cd CIRI-long

Create virtual environment
python3 -m venv venv

Activate virtualenv
source ./venv/bin/activate

Install CIRI-long
make

Test for installation
make test

The package should take less than 1 min to install on a normal computer.

Install CIRI-long using pip

pip install CIRI-long

Usage

Basic usage

usage: CIRI-long [-h] [-v] {call,collapse} ...

positional arguments:
 {call,collapse} commands

optional arguments:
 -h, --help show this help message and exit
 -v, --version show program's version number and exit

CIRI-long have two main functions, including (1) candidate circRNAs identification and (2) isoform collapsing.

Step1. circRNA identification

Basic options

usage: CIRI-long call [-h] [-i READS] [-o DIR] [-r REF] [-p PREFIX] [-a GTF] [--canonical] [-t INT] [--debug]

optional arguments:
 -h, --help show this help message and exit
 -i READS, --in READS Input reads.fq.gz
 -o DIR, --out DIR Output directory, default: ./
 -r REF, --ref REF Reference genome FASTA file
 -p PREFIX, --prefix PREFIX
 Output sample prefix, (default: CIRI-long)
 -a GTF, --anno GTF Genome reference gtf, (optional)
 -c CIRC, --circ CIRC Additional circRNA annotation in bed/gtf format,
 (optional)
 -t INT, --threads INT
 Number of threads, (default: use all cores)
 --debug Run in debugging mode, (default: False)

NOTE:

	A bwa index for reference genome is required, please use bwa index command to generate bwa index before running CIRI-long.

Example Usage:

Demo dataset can be downloaded from the GitHub release [https://github.com/bioinfo-biols/CIRI-long/releases]

Download demo dataset
wget https://github.com/bioinfo-biols/CIRI-long/releases/download/v0.6-alpha/CIRI-long_test_data.tar.gz

Decompress demo dataset
tar zxvf CIRI-long_test_data.tar.gz
cd test_data

Build bwa index before running CIRI-long
bwa index -a bwtsw mm10_chr12.fa mm10_chr12.fa

Run CIRI-long to identify circular reads from sequencing reads
CIRI-long call -i test_reads.fa \
 -o ./test_call \
 -r mm10_chr12.fa \
 -p test \
 -a mm10_chr12.gtf \
 -t 8

Output Files

The output directory should have the following structure:

test_call
├── test.cand_circ.fa
├── test.json
├── test.log
├── test.low_confidence.fa
└── tmp
 ├── ss.idx
 ├── test.ccs.fa
 └── test.raw.fa

1 directory, 7 files

Using non-canonical splice signals

If you would like to use other splice signals, please modify the dict SPLICE_SIGNAL in align.py [https://github.com/bioinfo-biols/CIRI-long/blob/master/CIRI/align.py#L34] in format: {(5’SS, 3’SS): Priority}

Default configuration:

SPLICE_SIGNAL = {
 ('GT', 'AG'): 0, # U2-type
 ('GC', 'AG'): 1, # U2-type
 ('AT', 'AC'): 2, # U12-type
 ('GT', 'AC'): 2, # U12-type
 ('AT', 'AG'): 2, # U12-type
}

Using additional circRNA annotations

From version v1.0.2, CIRI-long call also provide additional circRNA annotations in BED/GTF format for BSJ correction with --circ option. CircRNA annotations can be downloaded from circAtlas [http://circatlas.biols.ac.cn/] or other databases. The GTF-format output of CIRIquant is also supported.

NOTE: If using results from other tools/databases, please make sure the coordinate system is compatible with our CIRI-series tools:

The coordinate system of circRNAs is different in most circRNA tools. For instance, if a circRNA is derived from chr1:1000-2000, it should be reported as chr1:1000-2000 in CIRI-series and some tools (DCC/KNIFE/Mapsplice), but reported as chr1:999-2000 in other tools (CIRCexplorer2/UROBORUS/circRNA_finder/find_circ).

Thus, if you want to use circRNAs identified from tools in the latter group, you need to add 1 extra base to the start coordinate of circRNAs (the position with smaller coordinate regardless of the strand information), then use the altered coordinates as input.

Step2. isoform collapse

Basic Options

usage: CIRI-long collapse [-h] [-i LIST] [-o DIR] [-p PREFIX] [-r REF] [-a GTF] [--canonical] [-t INT] [--debug]

optional arguments:
 -h, --help show this help message and exit
 -i LIST, --in LIST Input list of CIRI-long results
 -o DIR, --out DIR Output directory, default: ./
 -p PREFIX, --prefix PREFIX
 Output sample prefix, (default: CIRI-long)
 -r REF, --ref REF Reference genome FASTA file
 -a GTF, --anno GTF Genome reference gtf, (optional)
 -c CIRC, --circ CIRC Additional circRNA annotation in bed/gtf format,
 (optional)
 -t INT, --threads INT
 Number of threads, (default: use all cores)
 --debug Run in debugging mode, (default: False)

One should provide a text file listing sample name and path to CIRI-long output files *.cand_circ.fa, seperated by space.

sample1_name /path/to/sample1/cand_circ.fa
sample2_name /path/to/sample2/cand_circ.fa

Example Usage

For exmaple, you can create a file name test.lst with the following content:

test ./test_call/test.cand_circ.fa

Then run CIRI-long collapse to aggregate results from one or multiple samples.

 CIRI-long collapse -i ./test.lst \
 -o ./test_collpase \
 -p test \
 -r ./mm10_chr12.fa \
 -a ./mm10_chr12.gtf \
 -t 8

Output Files

The output directory should have the following structure:

test_collpase
├── test_collpase.expression
├── test_collpase.isoforms
├── test_collpase.info
├── test_collpase.log
├── test_collpase.reads
└── tmp
 ├── ss.idx
 └── test_collpase.corrected.pkl

1 directory, 6 files

Output Format

The main output

The main output of CIRI-long is a GTF file (e.g. test_collpase.info), that contains detailed information of circRNAs and annotation of circRNA back-spliced regions in the attribute columns

Description of each columns’s value

	column
	name
	description

	1
	chrom
	chromosome / contig name

	2
	source
	CIRI-long

	3
	type
	circRNA

	4
	start
	5' back-spliced junction site

	5
	end
	3' back-spliced junction site

	6
	score
	Number of total supported reads

	7
	strand
	strand information

	8
	.
	.

	9
	attributes
	attributes seperated by semicolon

The attributes containing several pre-defined keys and values:

	key
	description

	circ_id
	name of circRNA

	splice_site
	splicing signal of candidate circRNAs and numbers indicating shifted bases of aligned and annotated splice site. (e.g. AG-GT|0-5)

	equivalent_seq
	equivalent sequence of splice site

	circ_type
	circRNA types: exon/intron/intergenic

	circ_len
	length of the major isoform of circRNA

	isoform
	structure of isoforms, isoforms are seperated by "|" and circular exons are seperated by "," (e.g. 11627815-111627914,111628190-111628302|11627815-111628302)

	gene_id
	ensemble id of host gene

	gene_name
	HGNC symbol of host gene

	gene_type
	type of host gene in the annotation gtf file

Expression matrix

	test_collpase.expression contains the summarized expression level of circRNAs in all samples in tsv format.

	test_collpase.isoforms contains the summarized isoform usage index of assembled isoforms in all samples in tsv format.

	Isoform usage index = Isoform_reads / Sum of all isoforms from the same BSJ

Step3. Output visualization

From version v1.1.0, CIRI-long included the ‘misc/convert_bed.py’, users can convert the GTF-formatted circRNA.info to bed format, and visualize using softwares like IGV / Jbrowse2

python3 misc/convert_bed.py collapse_out/sample.info sample_circ.bed

CIRI-long Nanopore Library Preparation

1. Total RNA Extraction & Ribosomal RNA Depletion

	Total RNA is isolated using TRIzol (Invitrogen) [https://assets.thermofisher.com/TFS-Assets/LSG/manuals/trizol_reagent.pdf]

	RiboErase kit (human/mouse/rat, KAPA Biosystems) [https://rochesequencingstore.com/wp-content/uploads/2017/10/KAPA-RiboErase-KitHMR_KR1142-%E2%80%93-v4.19.pdf] is used to remove rRNA from 1ug of total RNA.

	Elute rRNA-depleted RNA from beads with 17uL nuclease free water.

2. Poly(A) Tailing & RNase R Treatment

Then, additional poly(A) tails are added to the linear transcripts to increase RNase R digestion efficiency.

2.1 Add Poly(A) Tails To Linear RNAs

E.coli Poly(A) Polymerase (NEBNext) [https://international.neb.com/protocols/2014/08/13/poly-a-tailing-of-rna-using-e-coli-poly-a-polymerase-neb-m0276] is used to add poly(A) tails to the 3’ end of linear RNAs, which can increase the RNase R digestion ability to RNAs with secondary structures.

	Add the following components in the order specified:

	Component
	Volume

	rRNA-depleted RNA
	15 uL

	10X E.coli Poly(A) Polymerase Reaction Buffer
	2uL

	ATP (10mM)
	2 uL

	E.coli Poly(A) Polymerase (5 U/uL)
	1 uL

	Total Volume:
	20 uL

	Ribosomal-depleted total RNA is incubated at 37ºC with 1uL of E.coli Poly(A) Polymerase (NEBNext) for 30min.

	Stop the reaction by proceeding to the cleanup step.

2.2 Purification After Poly(A) Treatment

Agencourt RNAClean XP kit (Beckman) [https://ls.beckmancoulter.co.jp/files/products/genomics/RNACleanXP/IFU_RNACleanXP.pdf] is used to remove contamination after poly(A) treatment.

	Component
	Volume

	Agencourt RNAClean XP
	44 uL

	Polyadenylated RNA
	20 uL

	Total Volume:
	64 uL

	Add 2.2uL of Agencourt RNAClean XP per 1.0 uL of sample.

	Wash beads + RNA fragments twice with 75% Ethanol to remove contaminants.

	Elute purified RNA from beads with 20uL H2O.

2.3 RNase R Treatment To Effectively Digest Linear RNAs

Polyadenylted RNA is treated using RNase R (Epicentre) [https://www.lucigen.com/docs/manuals/MA266E-RNase-R.pdf] to remove linear RNAs.

	Component
	Volume

	Polyadenylated RNA
	17.5 uL

	RNase R Buffer
	2 uL

	RNase R (20 U/uL)
	0.5 uL

	Total
	20 uL

	Polyadenylated RNA was incubated with RNase R at 37ºC for 15 min.

2.4 Purification after RNase R Treatment

2.2x bead-based cleanup is used to remove contamination after RNase R treatment as described above (See Part 2.2).

	Add 2.2uL of Agencourt RNAClean XP per 1.0 uL of sample.

	Wash beads + RNA fragments twice with 75% Ethanol to remove contaminants.

	Elute purified RNA with 5uL H2O.

3. SMARTer Reverse Transcription

Then, RNase R-treated RNA is reverse transcribed using random hexamers and SMARTer cDNA synthesis kit (Takara Bio) [https://www.takarabio.com/documents/User%20Manual/SMARTer%20PCR%20cDNA%20Synthesis%20Kit%20User%20Manual%20%28PT4097/SMARTer%20PCR%20cDNA%20Synthesis%20Kit%20User%20Manual%20%28PT4097-1%29_040114.pdf] according to the manufacturer’s instructions. The 3’ SMART CDS Primer II A 5'-AAGCAGTGGTATCAACGCAGAGTACT(30)N-1N-3' was replaced with 5'-AAGCAGTGGTATCAACGCAGAGTACNNNNNN-3' to amplify circular RNAs without poly(A) sequences.

	Prepare reaction as follows:

	Component
	Volume

	RNase R treated RNA
	3.5 uL

	SMARTer CDS random primer (12 uM)
	1 uL

	Total Volume:
	4.5 uL

	Incubated at 72ºC for 3min, 25ºC for 10min, hold at 42ºC.

	Add the following mixture:

	Component
	Volume

	5x First Strand Buffer (RNase-Free)
	2 uL

	Dithiothreitol (DTT; 100 mM)
	0.25 uL

	dNTP Mix (10 mM)
	1 uL

	SMARTer II A Oligonucleotide (12 uM)
	1 uL

	RNase Inhibitor (40 U/uL)
	0.25 uL

	SMARTScribe Reverse Transcriptase (100 U/uL)
	1 uL

	Total Volume:
	5.5 uL

	Incubation at 42ºC for 90 min.

	Denatured at 70ºC for 10 min.

4. cDNA PCR Amplification

To obtain sufficient cDNA products for sequencing, PCR amplification is performed using 2uL of cDNA with NEBNext LongAmp Taq 2x master mix [https://international.neb.com/protocols/2012/09/05/protocol-for-longamp-taq-2x-master-mix-m0287] and SMARTer primers under the following conditions:

	STEP
	TEMP
	TIME

	Initial Denaturation
	95ºC
	30 s

	19-20 Cycles
	95ºC62ºC65ºC

 circAtlas v2.0

circAtlas v2.0

circAtlas v2.0: An integrated resource of circRNAs in vertebrates. [http://circatlas.biols.ac.cn]

Circular RNAs (circRNAs) are a novel class of RNAs with important biological implications. Currently, a huge number of circRNAs was already identified from high-throughput RNA-seq data sets. However, functional annotation and prioritization of these circRNAs for further expreimental validation as well as functional investigation is the bottleneck step for current circRNA studies. Now, we developed a new resource database and web tool named circAtlas 2.0 that integrated over one millions of circRNAs across 6 species (human, macaca, mouse, rat, pig, chicken) and a variety of tissues. The circAtlas 2.0 can fill this gap by integrating the most comprehensive circRNAs and their expression and functional profiles in vertebrates, which provides a foundation for circRNA studies and serves as a powerful starting point to investigate their biological significance.

Please refer to http://circatlas.biols.ac.cn/tutorial [http://159.226.67.237:8080/new/tutorial.php] for detailed information.

[image: circAtlas.png]

 Index

Index

nav.xhtml

 Table of Contents

 		
 Welcome to CIRI Toolkit’s documentation!

 		
 About

 		
 Release Notes

 		
 Citations:

 		
 Usage

 		
 Commands and arguments

 		
 Preparation for using CIRI2

 		
 Annotation formats

 		
 An example of running CIRI2

 		
 Test of CIRI2

 		
 Q&A

 		
 About

 		
 Usage

 		
 How to run CIRI-AS

 		
 Commands and arguments

 		
 Preparation for using CIRI-AS

 		
 Annotation formats

 		
 An example of running CIRI-AS

 		
 About

 		
 Installation

 		
 Running CIRI-full pipeline

 		
 Running CIRI-full step-by-step

 		
 The RO1 module

 		
 The RO2 module

 		
 The Merge module

 		
 Running CIRI-vis

 		
 How to run the test data set using CIRI-full

 		
 About

 		
 Author

 		
 Release Notes

 		
 Installation

 		
 Prerequisites

 		
 Install CIRI-vis

 		
 Commands and Arguments

 		
 Running CIRI-vis

 		
 Output files

 		
 Example Usage

 		
 About

 		
 Author

 		
 Release Notes

 		
 License

 		
 Citing CIRIquant

 		
 Installation

 		
 Prerequisites

 		
 Use the released version (Recommended)

 		
 Install CIRIquant and dependencies using conda (Not recommended)

 		
 Install CIRIquant using pip

 		
 Install CIRIquant from source code

 		
 Usage 1: circRNA quantifcation

 		
 Basic options

 		
 Example YAML config

 		
 Example circRNA bed file

 		
 Example Usage

 		
 Recommended: Predict circRNAs using CIRI2 (packaged in CIRIquant)

 		
 Quantify circRNAs using provided BED format input

 		
 Quantify circRNAs using results from other tools

 		
 Output format

 		
 Usage 2: RNase R effect correction

 		
 Example usage

 		
 Usage 3: Differential expression analysis

 		
 Study without biological replicate

 		
 Study with biological replicates

 		
 Test data

 		
 Download test dataset

 		
 circRNA quantification

 		
 1. Generate hisat2 and bwa index

 		
 2. Customize the configuration

 		
 3. Run test dataset

 		
 Differential expression analysis

 		
 About

 		
 CIRI-long: circular RNA identifier using long-read sequencing data

 		
 Author

 		
 Release Notes

 		
 License

 		
 Citing CIRI-long

 		
 Installation

 		
 Dependency

 		
 Install CIRI-long from source code

 		
 Install CIRI-long using pip

 		
 Usage

 		
 Basic usage

 		
 Step1. circRNA identification

 		
 Basic options

 		
 Example Usage:

 		
 Output Files

 		
 Using non-canonical splice signals

 		
 Using additional circRNA annotations

 		
 Step2. isoform collapse

 		
 Basic Options

 		
 Example Usage

 		
 Output Files

 		
 Output Format

 		
 Step3. Output visualization

 		
 CIRI-long Nanopore Library Preparation
